如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是
①求证:BD⊥AD;
②若AC=9,tan∠ABC= , 求⊙O的半径.
初步探索
素材1:
如图①,连接对应点 , , 则.
素材2:
如图②,以为圆心,边上的高为半径作 , 则与相切.
问题解决
(1)(ⅰ)请证明素材1所发现的结论.
(ⅱ)如图2,过点作 , 垂足为.证明途径可以用下面的框图表示,请填写其中的空格.
深入研究
(2)在满足 , , 是的中点,绕点逆时针旋转得.
(ⅰ)如图③,当边恰好经过点时,连接 , 则的长为▲.
(ⅱ)若一时边所在直线恰好经过点 , 于图④中利用无刻度的直尺和圆规作出直线.(只保留作图痕迹)
(3)在(2)的条件下,如图⑤,在旋转过程中,直线 , 交于点 , 求的最大值为▲.
【问题提出】车轮为什么要做成圆形, 这里面有什么数学原理?